1.已知在\(\Delta{ABC}\)中,\(\angle{A}\),\(\angle{B}\)是銳角,且\({\rm sin}A=\frac{5}{13}\),\({\rm tan}B=2\),\(\overline{AB}=29\),求\(\Delta{ABC}\)面積﹒
2.正三角形\(PQR\)之邊長為\(2\)﹒點\(S\)為\(\overline{QR}\)邊上的中點,點\(T\)與點\(U\)分別為\(\overline{PR}\)與\(\overline{PQ}\)邊上的點,使得\(STXU\)為正方形,如右圖所示,則此正方形的面積為
(A)\(6-3\sqrt{3}\) (B)\(\frac{5-2\sqrt{3}}{5}\) (C)\(\frac{3}{4}\) (D)\(\frac{2\sqrt{3}}{3}\) (E)\(\frac{1+\sqrt{2}}{2}\)
3.銳角三角形\(\Delta{ABC}\)的三邊長\(\overline{BC}=a\)、\(\overline{CA}=b\)、\(\overline{AB}=c\),\(\Delta{ABC}\)的外心到三邊的距離分別是\(m\)、\(n\)、\(p\),則\(m:n:p=\)等於
(A)\(\frac{1}{a}:\frac{1}{b}:\frac{1}{c}\) (B)\(a:b:c\) (C)\({\rm cos}A:{\rm cos}B:{\rm cos}C\) (D)\({\rm sin}A:{\rm sin}B:{\rm sin}C\)
4.\(\Delta{ABC}\)中,\(\overline{AB}=1\),\(\angle{ABC}={90}^\circ \),延長\(\overline{AC}\)至\(D\),使得\(\overline{CD}=1\),\(\angle{CBD}={30}^\circ\),試求\(\overline{AC}\)﹒
5.平面上一圓\(O\),直徑為\(\overline{AB}\),\(C\)為圓\(O\)上一點,\(D\)為\(\overline{AB}\)上一點,且\(\overline{CD} \perp \overline{AB}\),若\(\angle{COD}=\alpha \),則\(\frac{\overline{AB}}{\overline{AD}}{\rm sin}^{2}\frac{\alpha}{2}\)= ﹒
沒有留言:
張貼留言