【徐詠詳提供】
作等腰直角三角形\(\Delta{ABC}\),\(\overline{AC}=\overline{BC}\),\({D}\)為\(\overline{BC}\),上一點,使得\(\angle{BCD}={15}^{\circ} \)﹒
設\(\overline{AD}={2}\)﹒則\(\overline{CD}=1\),\(\overline{AC}=\sqrt{3}\),\(\overline{BC}=\sqrt{3}-1 \)﹒
作\(\overline{DE} \perp \overline{AB}\)於\({E}\),因為\(\Delta{BED}\)等腰直角三角形,所以\(\overline{DE}=\frac{\sqrt{3}-1}{\sqrt{2}}\)﹒
故\({\rm sin}{15}^\circ =\frac{\frac{\sqrt{3}-1}{\sqrt{2}}}{2}=\frac{\sqrt{6}-\sqrt{2}}{4}\)﹒
沒有留言:
張貼留言